
Number 2616

Converting a Series 2400 SourceMeter®

SCPI Application to a Series 2600
Converting a Series 2400 SourceMeter
SCPI Application to a Series 2600
Converting a Series 2400 SourceMeter

System SourceMeter Script Application
SCPI Application to a Series 2600
System SourceMeter Script Application
SCPI Application to a Series 2600

Application Note
Se ries

Introduction
For many years, instrument manufacturers worked to define
a standard set of commands to control programmable test
and measurement devices in instrumentation systems. Today,
that standard is called the “The Standard Commands for
Programmable Instrumentation” or SCPI. SCPI provides a uni-
form and consistent language for the control of test and measure-
ment instruments. The same commands and responses control
corresponding instrument functions in SCPI equipment, regard-
less of the supplier or the type of instrument.

The number of SCPI commands for an instrument can be
extensive. For example, Series 2400 SourceMeter instruments
have more than 390 individual SCPI commands. In many appli-
cations, only a small percentage of the commands are actually
used. Setting up a Series 2400 may require specific SCPI com-
mands be used and sent to the instrument in a very specific
sequence in order for the operation to function correctly. Only
when you have a good understanding of the SCPI syntax can you
then take advantage of the many potential benefits the instru-
ment offers.

Keithley’s new high speed Series 2600 SourceMeter instru-
ments use a Test Script Processor (TSP) to process and run pro-
grams called scripts to meet the most demanding throughput
requirements. A script is a collection of instrument control com-
mands and/or program statements. Program statements control
script execution and provide facilities such as variables, func-
tions, branching, and loop control. Because scripts are programs,
they are written using a programming language. This language
is called the Test Script Processor language. This truly simple
programming interface enables the user to create powerful, high
speed, multi-channel tests with significantly reduced develop-
ment times.

The functionality is very simple. You download your TSP
script into either volatile or nonvolatile memory and the unit
controls itself, independent of the system host controller. This
capability can free up the system controller to interface with
other instruments in the rack more frequently, thereby increasing
the overall system throughput. Furthermore, the Series 2600 has
very deep memory. Program memory can hold 50,000 lines of
code and data memory can store at least 100,000 readings.

The TSP language gives the user far superior flexibility with
the Series 2600 as compared to the Series 2400. The Model 260x
is programmed using more than 100 simplified commands that
perform many of the same functions as the 390+ SCPI com-

mands do for the Series 2400. The smaller number of Model
260x commands means the learning curve is reduced, decreasing
overall development time.

This application note compares SCPI commands with the
new Series 2600 scripting approach and illustrates how to con-
vert a Series 2400 SCPI-based application to a Series 2600 test
script application.

The SCPI Instrument Model

Some measurements require direct control over an instrument’s
hardware. To provide this control, SCPI-based instruments con-
tain command subsystems that control particular instrument
functions and settings. These commands trade interchangeability
for fine control. The ability to configure instruments and make
measurements with different degrees of control is a major benefit
of SCPI.

The SCPI Instrument Model controls the way instrument
functionality is divided among the SCPI command sub-systems.
For the case of the Series 2400, the command sub-systems are
broken down into the following categories:

 1. Signal-Oriented Measurement: Commands used to acquire
readings.

 2. Calculate: Used for math expressions, limit testing, and
 statistics.

 3. Display: Controls the display of the SourceMeter instruments.

 4. Format: Selects the data format for transferring readings over
the bus.

 5. Output: Controls the output of the selected source.

 6. Route: Controls front/rear inputs or switching.

 7. Sense: Configures and controls the measurement functions.

 8. Source: Configures and controls the I-Source and V-Source.

 9. Status: Controls the status registers.

10. System: Contains miscellaneous commands for instrument
setup.

11. Trace: Configures and controls data storage into the buffer.

12. Trigger: Configures the Trigger Model.

TSP and Scripting: A more efficient
programming method
The TSP language of the Model 260x offers an equivalent model
of instrument commands. The following command sets apply to
the Model 260x:

 1. Beeper: Commands used to control the built-in beeper.

 2. Bit: Used to perform logic operations on one or two
numbers.

 3. Delay: Used to control read/write and trigger operations for
the digital I/O port.

 4. Digital I/O: Selects the data format for transferring readings
over the bus.

 5. Display: Used to control display messaging on the front
panel of the Model 260x.

 6. Error Queue: Used to read the entries in the error/event
queue.

 7. Exit: Used to terminate a script that is presently running.

 8. Format: Used for data printed with the printnumber and
printbuffer commands.

 9. GPIB: Used to set the GPIB address.

10. LocalNode: Used to set the power line frequency, control
(on/off) prompt ing, and control (hide/show) error messages
on the display.

11. Make: Used to set and retrieve a value for an attribute.

12. Operation Complete: Sets the OPC bit in the status register
when all overlapped commands are completed.

13. PrintBuffer: Used to print data and numbers.

14. Reset: Used to return a Model 260x to its default settings.

15. Serial: Used to configure the RS-232 Interface.

16. Setup: Used to save/recall setups and set the power-on setup.

17. SMU: Used to control basic source-measure operations of the
SMUs.

18. Timer: The timer can be used to measure the time it takes to
perform various operations.

19. Trigger: Used to control triggering.

20. TSPLink: Used to assign node numbers to a mainframe and
initial ize the TSP-Link system.

21. UserString: Used to store/retrieve user-defined strings in
non-volatile memory.

22. Wait Complete: Waits for all overlapped commands to
complete.

What may appear to be a larger list of command definitions
compared to the Series 2400 SourceMeter is instead a reduced
set of individual commands.

There are two simple methods to program and communicate
with the Model 260x SourceMeter, either by executing individual
TSP commands (similar to sending individual SCPI commands)
or by writing test scripts. Scripts are a collection (list) of instru-
ment control commands and/or program statements. All com-
mands and statements in the script are executed by the Model
260x SourceMeter. Running a script at the SourceMeter is faster
than running the test program from the PC. The GPIB transmis-
sion times from PC to SourceMeter can be eliminated by the
use of scripts. There are two types of scripts: factory scripts and
scripts created by the operator. Factory scripts are created by
Keithley and are saved in nonvolatile memory of the SourceMeter
Instrument.

SCPI vs. TSP Language Comparison
Let’s examine the difference between using SCPI commands and
those used with TSP. We will compare the two programming
methods for a simple Source-Measure cycle. This example will
source 10V, with a current compliance of 10mA, and measure the
current. The current reading is sent to the host PC and displayed.

The Series 2400 SCPI commands to send to the instrument
and an equivalent Series 2600 TSP script are shown in Table 1.

A complete comparison of the Series 2600 TSP language
commands versus the comparable SCPI commands for the Series
2400 is listed at the end of this Application Note. The SCPI
program shown in Table 1 converts easily to an equivalent TSP
script. Note the similarity of the TSP commands in structure to
the SCPI commands.

One of the main differences is when you take readings. In
the SCPI case, you must send the READ? command to initiate the
measurement. The reading is stored in a reading queue in the
Series 2400. The control program must then get the reading from
the instrument in order to complete the process. This is not the
case with the TSP script. Note that in the script, a measurement
is executed by the command READING = smua.measure.i().
But here, the measurement is stored in the variable READING. It
is not necessary to return the measurement to the host control-
ler unless it is required. READING could be used within the TSP

SCPI Commands Comments TSP Script Commands Comments
*RST
:SOUR:FUNC VOLT
:SOUR:VOLT:LEV 10
:SENS:CURR:PROT 10E-3
:SENS:FUNC “CURR”
:SENS:CURR:RANG 10E-3
:OUTP ON
:READ?
:OUTP OFF

Restore GPIB defaults.
Select voltage source.
Source output = 10V.
10mA compliance.
Current measure function.
10mA measure range.
Output on before measuring.
Trigger, acquire reading.
Output Off

reset()
smua.source.func = smua.OUTPUT_DCVOLTS
smua.source.levelv = 10
smua.source.limiti = 0.01

smua.measure.rangei = 0.01
smua.source.output = smua.OUTPUT_ON
READING = smua.measure.i()
smua.source.output = smua.OUTPUT_OFF

Resets the Model 260x.
Select voltage source.
Source output = 10V.
10mA compliance.

10mA measure range.
Output on before measuring.
Acquire reading. Store in variable.
Output Off.

Table 1.

script for other operations, such as limit testing, a math operation, or as part of an overall testing strategy. This is where the power of
the TSP functions begins.

The TSP language goes well beyond just sending instrument commands. The TSP language also includes a set of capabilities
that include variable and variable typing, math operators and operations, tables and arrays, creation of user functions callable from
scripts, precedence, logical operators, string concatenation, conditional branching, loop control, and built-in standard string and
math callable libraries. These tools, which are built into the TSP language, open up the programming potential for the Model 260x,
but more importantly, simplify the application development compared to SCPI programming.

To illustrate this potential, let’s convert a few SCPI Series 2400 applications into Series 2600 scripts.

Converting a SCPI Series 2400 Application to a Series 2600 Script
Let’s take a look at a few simple Series 2400 SCPI programs that we want to convert to a Model 2602 script. One of the most common
applications for the Series 2400 and 2600 is performing an I-V sweep. Sweeps allow you to program the instrument to step through
specific voltage and current values and perform measurements at each source value.

The first program is designed to perform the following task:

 1. I-V sweep: Source Voltage, Measure Current.

 2. The sourcing mode will be a linear voltage sweep, with a starting voltage of 1 volt and a stopping voltage of 5 volts. Each step will
be a 1 volt step.

 3. A trigger count of 5 will be required to complete the five points of the sweep.

 4. Turn the output on.

 5. Perform a READ? to start the test and get the data.

The following ten lines of SCPI commands are required to execute the test:
 SOUR:FUNC VOLT
:SENSE:FUNC ʻCURR:DCʼ
:SOUR:VOLT:START 1
:SOUR:VOLT:STOP 5
:SOUR:VOLT:STEP 1
:SOUR:VOLT:MODE SWE
:SOUR:SWEEP:SPACE LIN
:TRIG:COUNT 5
:OUPUT ON
:READ?

These ten lines of SCPI commands can be converted to a simple Series 2600 TSP test sequence. The following lines of TSP code
can be used to perform the same function:

smua.source.func = smua.OUTPUT_DCVOLTS -- Set the source function to DC Volts
smua.source.output = smua.OUTPUT_ON -- Turns on the output
for j = 1, 5 do -- Create a For..Do loop to sweep from 1 to 5 volts
 smua.source.levelv = j -- Set the output level to the integer value of ʻjʼ
 current = smua.measure.i() -- Measure the current.
 print(current) -- Return the measurement to the PC
end -- End of the For..Do loop
smua.source.output = smua.OUTPUT_OFF -- Turns off the output

Using the simple For..Do loop, we can loop five times and use the integer loop values as the source voltage levels. Each time
through the loop, the variable ‘j’ contains the output voltage value. The measured current is placed into a variable named “current.”
Lastly, the value of current is printed or sent over the IEEE bus back to a host computer.

If performing a linear sweep is a function that you need to perform often, this script can be rewritten as a TSP function that is
reusable and callable at any time once loaded into the Model 260x. Here is how this function might look:

function linearSweep(channel,func,start,stop,step)
-- Setup source parameters here depending on the selection of Current or Voltage and the Channel.
-- To set the appropriate range, determine the maximum value between either the ʻstartʼ or ʻstop
-- value. Perform an absolute value function to use the correct value in the command.

reset()

-- Verify which channel to use. Alias the command ʻsmuXʼ to channel
if (channel==”smua”) then

 channel = smua
else

 channel = smub
end

-- Disable all autoranging to measure both I and V
 channel.source.autorangei = channel.AUTORANGE_OFF
 channel.measure.autorangev = channel.AUTORANGE_OFF
 channel.source.autorangev = channel.AUTORANGE_OFF
 channel.measure.autorangei = channel.AUTORANGE_OFF

-- Set the appropriate source functions based on sourcing ʻampsʼ or ʻvoltsʼ.

if (func==”amps”) then
 channel.source.func = channel.OUTPUT_DCAMPS
 channel.source.rangei = math.max(math.abs(start),math.abs(stop))

else
 channel.source.func = channel.OUTPUT_DCVOLTS
 channel.source.rangev = math.max(math.abs(start),math.abs(stop))

end

-- Define and set specific variables

 ireadings = {}
 vreadings = {}
 sweep_index = 1
 newlevel = start
 points = math.ceil(((stop-start)/step)+1)

-- Set the output to the initial value

if (func==”amps”) then
 channel.source.leveli = start

else
 channel.source.levelv = start

end

-- Turn output ON depending on channel selected

 channel.source.output = channel.OUTPUT_ON

-- Execute sweep. Measure both I and V. Index the new level by the step value in order to
-- provide the ʻchannel.measureivandstepʼ command with the next value.

while (sweep_index < points+1) do
 newlevel = newlevel + step
 ireadings[sweep_index], vreadings[sweep_index] = channel.measureivandstep(newlevel)
 print(ireadings[sweep_index], vreadings[sweep_index])
 sweep_index = sweep_index + 1

end

-- Turn output OFF depending on channel selected

 channel.source.output = channel.OUTPUT_OFF

end

This function allows you to pass parameters, specifically the
SMU channel you wish to use, the sourcing functions (“volts” or
“amps”), the start, stop, and step values. The script determines
which range to use based upon the start or stop value. Note
the use of the math library math.max() built into the TSP lan-
guage. The script then checks to see which sourcing function
you selected and sets the output function accordingly. The script
continues by defining variable tables to hold the measurements,
as well as calculating how many points will make up the sweep.
The initial value of the sweep is set and the output is turned on.
Next, a While loop is used to perform the sweep from the start
value to the stop value, incrementing by the value of ‘step’. The
key to high throughput in the sweep is the use of the ‘reading =
smuX.measureYandstep(sourcevalue)’ function call. This func-
tion is provided for very fast execution of source-measure loops.

The mea surement will be made prior to stepping the source.
Prior to using this command, and before any loop this command
may be used in, the source value should be set to its initial level.

Once the sweep is completed, the output is turned off. At
this point, both the current and voltage measurements are stored
in their respective tables, which can be returned to the host con-
troller, or used in another part of the test script.

Source Memory Test Sequencing
It is well recognized that communications between test equip-
ment and the system controller can be a significant bottleneck
that limits test system throughput. It is common practice to
perform command and data transfers while a prober or handler
is performing mechanical operations so that valuable test time

is not consumed. However, as test systems get increasingly
complex and more controller/instrument interaction is gener-
ally required, this gets more difficult to accomplish. Keithley’s
Series 2400 SourceMeter instruments addressed the issue with
the source memory test sequencer, but it has its limitations. You
can use all memory locations for a single test sequence or you
can divide the memory locations among multiple test sequences;
in either case, there are only 100 total memory locations or
sequence steps available. Typically, each step in the sequence
generates a reading, which can be stored in data buffers for
retrieval. Depending on how you set up and initiate the instru-
ment, the buffers can hold a maximum of from 2500 to 5000
readings. If it is necessary to retrieve the actual test values for
SPC or other reasons, then depending on how many steps there
are in a single test sequence, this can severely limit the number
of discrete components that can be tested before interaction with
the controller is required.

The second conversion example will illustrate sending the
SCPI commands to perform a source memory sweep on the
Series 2400. Assume a three-point sweep with the following
operating modes:

Source Memory Location #1: Source voltage, measure current,
10V source value.

Source Memory Location #2: Source current, measure voltage,
100mA source value.

Source Memory Location #3: Source current, measure current,
100mA source value.

Table 2 summarizes the basic remote command sequence
for performing the basic source memory sweep described above.

Table 2.

Command Description
*RST
:SENS:FUNC:CONC OFF
:SOUR:FUNC MEM
:SOUR:MEM:POIN 3
:SOUR:MEM:STAR 1
:SOUR:FUNC VOLT
:SENS:FUNC ʻCURR:DCʼ
:SOUR:VOLT 10
:SOUR:MEM:SAVE 1
:SOUR:FUNC CURR
:SENS:FUNC ʻVOLT:DCʼ
:SOUR:CURR 100E-3
:SOUR:MEM:SAVE 2
:SENS:FUNC ʻCURR:DCʼ
:SOUR:MEM:SAVE 3
:TRIG:COUN 3
:OUTP ON
:READ?

Restore GPIB default conditions.
Turn off concurrent functions.
Source memory sweep mode.
Number memory points = 3.
Start at memory location 1.
Volts source function.
Current sense function.
10V source voltage.
Save in source memory location 1.
Current source function.
Volts sense function.
100mA source current.
Save in source memory location 2.
Current sense function.
Save in source memory location 3.
Trigger count = # sweep points.
Turn on source output.
Trigger sweep, request data.

A source memory sweep represents a challenge for an equiv-
alent Series 2600 script. The challenges lie in how you handle
the different source-measure parameters and their associated val-
ues. A very quick and simple way of performing the same sweep
is to write a sequential source-measure function for each value. A
typical script may look like that shown in Table 3:

Table 3.

TSP Script Commands Comments
reset()
smua.source.func = smua.
OUTPUT_DCVOLTS
smua.source.levelv = 10
smua.source.output = smua.
OUTPUT_ON
current1 = smua.measure.i()
print(current1)
smua.source.func = smua.
OUTPUT_DCAMPS
smua.source.leveli = 0.1
current3, voltage2 = smua.
measure.iv()
print(voltage2, current3)
smua.source.output = smua.
OUTPUT_OFF

Resets the 260x.
Set the source function to volts.

Source output = 10V.
Turn the output on.

Acquire the current measurement.
Return the reading to the host.
Set the source function to current.

100mA measure range.
Acquire both current and voltage
readings.
Return readings to the host.
Output off.

 This script performs the same function in the 18 lines
of SCPI code previously shown. Because the second and third
points of the Series 2400 source-memory list output the same
current value of 100mA, Location #2 measures voltage and
Location #3 measures the current. The Series 2600’s smuX.
measure.Y gives you the option to measure voltage, current, or measure.Y gives you the option to measure voltage, current, or measure.Y
voltage and current together. We can combine the equivalent of
source-memory Locations 2 and 3 of the Series 2400 into a single
Series 2600 command by sending the ‘current3, voltage2 =
smua.measure.iv()’ command. Note that you also need to pro-
vide two variables to store the two readings.

Unfortunately, not every source-memory list sweep may
result in an easy conversion as shown due to the larger number
of points in the sweep to be executed. Let’s modify the SCPI
example by adding two more additional points to the test:

Source Memory Location #1: Source voltage, measure current,
10V source value.

Source Memory Location #2: Source current, measure voltage,
100mA source value.

Source Memory Location #3: Source current, measure current,
100mA source value.

Source Memory Location #4: Source voltage, measure current,
1V source value.

Source Memory Location #5: Source current, measure voltage,
1mA source value.

Table 4 summarizes the basic remote command sequence
for performing the basic source memory sweep described in
Table 3 with a Series 2400.

Command Description
*RST
:SENS:FUNC:CONC OFF
:SOUR:FUNC MEM
:SOUR:MEM:POIN 5
:SOUR:MEM:STAR 1
:SOUR:FUNC VOLT
:SENS:FUNC ʻCURR:DCʼ
:SOUR:VOLT 10
:SOUR:MEM:SAVE 1
:SOUR:FUNC CURR
:SENS:FUNC ʻVOLT:DCʼ
:SOUR:CURR 100E-3
:SOUR:MEM:SAVE 2
:SENS:FUNC ʻCURR:DCʼ
:SOUR:MEM:SAVE 3
:SOUR:FUNC VOLT
:SENS:FUNC ʻCURR:DCʼ
:SOUR:VOLT 1
:SOUR:MEM:SAVE 4
:SOUR:FUNC CURR
:SENS:FUNC ʻVOLT:DCʼ
:SOUR:CURR 1E-3
:SOUR:MEM:SAVE 5
:TRIG:COUN 5
:OUTP ON
:READ?

Restore GPIB default conditions.
Turn off concurrent functions.
Source memory sweep mode.
Number memory points = 5.
Start at memory location 1.
Volts source function.
Current sense function.
10V source voltage.
Save in source memory location 1.
Current source function.
Volts sense function.
100mA source current.
Save in source memory location 2.
Current sense function.
Save in source memory location 3.
Volts source function.
Current sense function.
1V source voltage.
Save in source memory location 4.
Current source function.
Volts sense function.
10mA source current.
Save in source memory location 5.
Trigger count = # sweep points.
Turn on source output.
Trigger sweep, request data.

The SCPI program has now increased by eight lines and the
complexity of the source-memory sweep has increased. Again, we
could write a Series 2600 script to perform the same sweep line
by line. But there is another approach that will take advantage of
the Model 260x’s “Tables and Array” capabilities. The following
Model 2602 in Table 5 script uses tables and arrays to perform
the equivalent source-memory sweep:

TSP Script Commands Comments
reset()
sourceMem = { { func = ʻvʼ, level = 10, meas = ʻiʼ
},
 { func = ʻiʼ, level = 0.1, meas = ʻvʼ },
 { func = ʻiʼ, level = 0.1, meas = ʻiʼ },
 { func = ʻvʼ, level = 1, meas = ʻiʼ },
 { func = ʻiʼ, level = 0.001, meas = ʻvʼ }
}

readings = { }

for j = 1, 5 do
 step = sourceMem[j]

if (step.func == ʻvʼ) then
 smua.source.func = smua.OUTPUT_DCVOLTS
 smua.source.levelv = step.level
 smua.source.output = smua.OUTPUT_ON
 if (step.meas == ʻiʼ) then
 readings[j] = smua.measure.i()
 else
 readings[j] = smua.measure.v()
 end
 smua.source.output = smua.OUTPUT_OFF

else
 smua.source.func = smua.OUTPUT_DCAMPS
 smua.source.leveli = step.level
 smua.source.output = smua.OUTPUT_ON
 if (step.meas == ʻvʼ) then
 readings[j] = smua.measure.v()
 else
 readings[j] = smua.measure.i()
 end
 smua.source.output = smua.OUTPUT_OFF

end

end

Reset Model 260x.
Define points for the equivalent source-memory sweep in the Series 2400. Param-
eters define the source function, the output value, and the measurement function.

Define table readings to hold measurements.

Set for..do loop from 1 to 5.
Alias ‘step’ to hold the parameters of sourceMem[j]
If the parameter ‘func’ = “v”, then
 Set output function to DC Volts.
 Set output level to the value of parameter ‘level’
 Turn source output on
 If the parameter ‘meas’ = “i” then
 measure current. Store in readings table.
 Else
 measure voltage. Store in readings table.
 End if
 turn source output off
Else
 Set output function to DC Amps.
 Set output level to the value of parameter ‘level’
 Turn source output on
 If the parameter ‘meas’ = “v” then
 measure voltage. Store in readings table.
 Else
 measure current. Store in readings table.
 End if
 turn source output off
End If

End of For..Do loop

Although this script looks complicated, it is really easy to
follow. The For..Do loops five times for the five sets of source-
 measure points that require execution. Also note that you are
able to alias a variable to take on the parameters of sourceMem.
This is done by setting step = sourceMem[j]. Conditional testing
can take place to see if you need to source a voltage or a current
and either measure a current or a voltage. In essence, we have

created a source-memory sweep engine for the Model 2602 that
would normally require many more lines of SCPI commands be
sent to the Series 2400. Once the For..Do loop is created, modify-
ing the sourceMem table for more or fewer points is all that is
required, along with updating the For..Do loop for the number of
source-measure points to be executed. The scripting does take on
object oriented coding that is permitted with the Series 2600.

Table 5.

Table 4.

Conclusion
This application note touches on just a few of the potential appli-
cations that can be converted from a Series 2400 SCPI program
to a Series 2600 TSP language script. Table 6 maps Series 2600 Table 6 maps Series 2600 Table 6
TSP language commands to their equivalent Series 2400 SCPI
commands. As you will see, the Series 2600 commands have
been optimized for greater flexibility and operation as compared
to the Series 2400 SCPI commands. In many cases, there are no

equivalent SCPI commands. Using the table, you will be able to
review your Series 2400 SCPI programs and determine if there
is an equivalent Series 2600 command. Once you have deter-
mined if a command maps, you can then use the power of the
Series 2600 TSP language to create simple to sophisticated test
sequence scripts that are reusable and solve many challenging
applications.

Additional Series 2600 TSP scripts can be found on
Keithley’s website at www.keithley.com.

Table 6. Series 2600 TSP / 2400 SCPI Command Comparison

TSP Command Series 2400 SCPI Command(s)
BEEPER CommandsBEEPER Commands
beeper.beep(duration, frequency) :SYSTem:BEEPer[:IMMediate <freq, time>
beeper.enable = <0/1> :SYSTem:BEEPer:STATe <ON/OFF>
BIT CommandsBIT Commands
bit.bitand(value1, value2) N/A
bit.bitor(value1, value2) N/A
bit.bitxor(value1, value2) N/A
bit.clear(value1, index) N/A
bit.get(value1, index) N/A
bit.getfield(value1, index, width)
bit.set(value1, index) N/A
bit.setfield(value1, index, width, fieldvalue) N/A
bit.test(value1, index) N/A
bit.toggle(value1, index) N/A
DELAY CommandsDELAY Commands
delay(seconds) :TRIGger:DELay <n>
DIGITAL I/O CommandsDIGITAL I/O Commands
digio.readbit(bit) N/A
digio.readport() N/A
digio.trigger[line].assert() N/A
digio.trigger[line].clear() :TRIGger:CLEar
digio.trigger[line].mode = <mode> N/A
digio.trigger[line].pulsewdith = <width> N/A
digio.trigger[line].release() N/A
digio.trigger[line].wait(timeout) Assumes waiting for a trigger using TriggerLink on a line::TRIGger:SEQuence1:

TCONfigure:ILINe <Nrf>
digio.writebit(bit,data) SOURce2:TTL <bit pattern>
digio.writeport(data) SOURce2:TTL <bit pattern>
digio.writeprotect = <mask> N/A
DISPLAY CommandsDISPLAY Commands
display.clear() :DISPlay:WINDow1:DATA “ “ (20 white space characters)

:DISPlay:WINDow2:DATA “ “ (32 white space characters)
display.getannunciators() N/A
display.getcursor() N/A
display.gettext([embellished, row, column start, column end]) :DISPlay:WINDow1:DATA?

:DISPlay:WINDow2:DATA?
display.input() N/A
display.inputvalue(format[, default, min, max]) N/A
display.loadmenu.add(displayname, script) N/A
display.loadmenu.delete(displayname) N/A
display.locallockout - display.[LOCK, UNLOCK] Requires low level GPIB programming to send the LLO command
display.menu(name, items) N/A
display.prompt(format, units, help[, default, min, max]) N/A
display.screen Dependent on which row is to be displayed or not:

Top Row=> :DISPlay:WINDow1:TEXT:STATe
Bottom Row=> :DISPlay:WINDow2:TEXT:STATe

display.sendkey(keycode) :SYSTem:KEY <n>
display.setcursor(row, column[, style]) N/A
display.settext(text) Top Row=> :DISPlay:WINDow1:TEXT:DATA <text>;STATe ON

Bottom Row=> :DISPlay:WINDow2:TEXT:DATA <text>;STATe ON
display.smuX.digits = display.[DIGITS_4_5, DIGITS_5_5, DIGITS_6_5] :DISPlay:DIGits <n> where n =4, 5, 6, 7
display.smuX.measure.func = display.[MEASURE_DCVOLTS, MEASURE_DCAMPS, MEASURE_
OHMS, MEASURE_WATTS]

:SENSe:FUNCtion:ON <”VOLTage/CURRent/RESistance”>

display.trigger.clear() :TRIGger:CLEar
display.trigger.wait(timeout) :ARM:SOURce MANual
ERROR QUEUE CommandsERROR QUEUE Commands
errorqueue.clear() :SYSTem:CLEar
errorqueue.count :SYSTem:ERRor:COUNt?
errorqueue.next() :SYSTem:ERRor:NEXT?
EXIT CommandsEXIT Commands
exit() N/A
FORMAT Commands FORMAT Commands
format.asciiprecision = <precision value> N/A
format.byteorder = format.[NORMAL, SWAPPED, BIGENDIAN, LITTLEENDIAN, NETWORK] :FORMat:BORDer <NORMal/SWAPped>
format.data = format.[ASCII, SREAL, REAL, REAL32, REAL64] :FORMat:DATA <ASCii/REAL,32/SREal>
GPIB CommandsGPIB Commands
gpib.address = <address> N/A
LOCALNODE Commands LOCALNODE Commands
localnode.linefreq = <50/60> :SYSTem:LFRequency <50/60>
localnode.prompts = <0/1> N/A

TSP Command Series 2400 SCPI Command(s)
localnode.showerrors = <0/1> N/A
MAKE Commands
makegetter(table, attributename) N/A
makesetter(table, attributename) N/A
OPERATION COMPLETE CommandsOPERATION COMPLETE Commands
opc() *OPC
PRINTBUFFER CommandsPRINTBUFFER Commands
printbuffer(start_index, end_index, st_1 [, st_n]) :TRACe:DATA?
printnumber(v1, [, vn]) N/A
RESET CommandsRESET Commands
reset() *RST or :SYSTem:PREset
SERIAL (RS-232) CommandsSERIAL (RS-232) Commands
serial.baud = <baud> N/A
serial.databits = <bits> N/A
serial.flowcontrol = <flow> N/A
serial.parity = <parity> N/A
serial.read(maxchars) N/A
serial.write(data) N/A
SETUP CommandsSETUP Commands
setup.poweron = <n> :SYSTem:POSetup <RST, PRESet, SAV 0-4>
setup.recall(n) *RCL <0,1,2,3,4>
setup.save(n) *SAV <0,1,2,3,4>
SMU CommandsSMU Commands
smuX.measure.autorangeY = smuX.[AUTORANGE_ON, AUTORANGE_OFF] DC Volts=> :SENSe:VOLTage:DC:AUTO <ON,OFF>

DC Amps=> :SENSe:CURRent:DC:AUTO <ON,OFF>
smuX.measure.autozero = smuX.[AUOTZERO_OFF, AUTOZERO_ONCE, AUTOZERO_ALWAYS,
AUTOZERO_AUTO]

:SYSTem:AZERo:STATe <ON,OFF>

smuX.measure.count = <count> Dependent on Trigger Model and Trace Buffer setup: Trace Buffer=> :TRACe:POINts
<Nrf> Trigger Model=> :TRIGger:COUNt <n>

smuX.measure.filter.count = <count> :SENSe:AVERage:COUNt <n>
smuX.measure.filter.enable = smuX.[FILTER_ON, FILTER_OFF] :SENSe:AVERage:STATe <ON/OFF>
smuX.masure.filter.type = smuX.[FILTER_MOVING_AVG, FILTER_REPEAT_AVG] :SENSe:AVERage:TCONtrol <MOVing/REPeat>
smuX.measure.interval = <interval> Equivalent to using a Timer trigger in the ARM Layer:

:ARM:SEQuence:SOURce TIMer;TIMer <n>
smuX.measure.lowrangeY = <lowrange> DC Volts=> :SENSe1:VOLTage:DC:RANGe:AUTO:LLIMit <n> DC Amps=> SENSe1:CURRent:DC:

RANGe:AUTO:LLIMit <n>
smuX.measure.nplc = <nplc> DC Volts=> :SENSe:VOLTage:DC:NPLCycles <n>

DC Amps=> :SENSe:CURRent:DC:NPLCycles <n>
smuX.measure.overlappedX(buffer) READ? (Buffer requires using => :TRACe:DATA?)
smuX.measure.rangeY = <rangeval> DC Volts=> :SENSe:VOLTage:DC:RANGe <n> DC Amps=> :SENSe:CURRent:DC:RANGe <n>
smuX.measure.rel.enableY = smuX.[REL_OFF, REL_ON] :CALCulate2:NULL:STATe <On, Off>
smuX.measure.rel.levelY = <relval> :CALCulate2:NULL:OFFSet <n>
<reading> = smuX.measure.Y([rbuffer]) :FETCh? :TRACe:DATA?
smuX.measureYandstep(sourcevalue) N/A
smuX.nvbuffer1 N/A
smuX.nvbuffer2 N/A
smuX.reset() *RST
smuX.sense = <sense> :SYSTem:RSENse <On,Off>
smuX.source.autorangeY = smuX.[AUTORANGE_ON, AUTORANGE_OFF] DC Volts=> :SOURce1:VOLTage:RANGe:AUTO

DC Amps=> :SOURce1:CURRent:RANGe:AUTO
smuX.source.func = smuX.[OUTPUT_DCVOLTS, OUTPUT_DCAMPS] :SOURce1:FUNCtion:MODE <name>
smuX.source.levelY = <sourceval> DC Volts=> :SOURce1:VOLTage:LEVel <n>

DC Amps=> :SOURce1:CURRent:LEVel <n>
smuX.source.limitY = <level> DC Volts Limit for I-Source=> :SENSe:VOLTage:DC:PROTection:LEVel <n> DC Amps Limit

for V-Source=> :SENSe:CURRent:DC:PROTection:LEVel <n>
smuX.source.lowrangeY = <rangeval> N/A
smuX.source.offmode = smuX.[OUTPUT_NORMAL, OUTPUT_HIGH_Z, OUTPUT_ZERO] :OUTPut:SMODe <name>
smuX.source.output = smuX.[OUTPUT_OFF, OUTPUT_ON] :OUTPut:STATe <On,Off>
smuX.source.outputenableaction = smuX.[OE_NONE, OE_OUTPUT_OFF] N/A
smuX.source.rangeY = <rangeval> DC Volts=> :SOURce1:VOLTage:RANGe <n>

DC Amps=> :SOURce1:CURRent:RANGe <n>
TIMER CommandsTIMER Commands
<time> = timer.measure.t() :SYSTem:TIME?
Timer.reset() :SYSTem:TIME:RESet
TRIGGER CommandsTRIGGER Commands
trigger.clear() :TRIGger:CLEar
trigger.wait(timeout) :ARM:SOURce BUS
TSPLINK Commands
tsplink.node = mynode N/A
tsplink.reset() N/A
state = tsplink.state N/A

USERSTRING Commands
userstring.add(name, value) N/A
userstring.catalog() N/A
userstring.delete(name) N/A
<value> = userstring.get(name) N/A
WAIT COMPLETE Commands
waitcomplete() *WAI

N/A = Not Applicable. No corresponding SCPI command.
Specifications are subject to change without notice.

All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

Keithley Instruments, Inc. 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168
 1-888-KEITHLEY (534-8453) • www.keithley.com

© Copyright 2005 Keithley Instruments, Inc. No. 2616
Printed in the U.S.A. 0405

Table 6. (con’t.)

